Changes

Jump to: navigation, search

Microbiology and Biochemistry

8 bytes added, 05:09, 13 May 2017
no edit summary
=Spontaneous fermentation=
The spontaneous fermentation of lambic is a complex process involving a succession of bacteria and yeasts that progresses along with the chemical changes that occur during fermentation.<ref name=GeuzeKriek>Jef Van den Steen, [[Books#Geuze & Kriek: The Secret of Lambic Beer|Geuze & Kriek: The Secret of Lambic Beer]], 2012</ref> The spontaneous fermentation process has shown considerable variability even among different barrels of beer from the same brewery,<ref name=Spitaels> F. Spitaels, A. D. Wieme, M. Janssens, M. Aerts, H.-M. Daniel, A. Van Landschoot, L. De Vuyst, P. Vandamme [http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095384 | The Microbial Diversity of Traditional Spontaneously Fermented Lambic Beer], 2000</ref> though all spontaneously fermented beers appear to follow a general sequence of microbes, which can be broken into four distinct stages:<ref name=AWAs>Nicholas A. Bokulich, Charles W. Bamforth, David A. Mills. [http://wwwjournals.plosoneplos.org/plosone/article/info%3Adoi%2F10?id=10.1371%2Fjournal/journal.pone.003550700355077|Brewhouse-Resident Microbiota Are Responsible for Multi-Stage Fermentation of American Coolship Ale], PLoS One, 7(4), 2012</ref><ref name=Oevelen77>D. Van Oevelen, M. Spaepen, P. Timmermans and H. Verachtert, [http://onlinelibrary.wiley.com/doi/10.1002/j.2050-0416.1977.tb03825.x/abstract|MICROBIOLOGICAL ASPECTS OF SPONTANEOUS WORT FERMENTATION IN THE PRODUCTION OF LAMBIC AND GUEUZE], 1977</ref><ref name=Spitaels />
# An enteric stage, starting around three days after the boil and ending between 30 and 90 days, in which enteric bacteria dominate.
Enteric bacteria are responsible for the production of [[acetic acid]], and the pH of the wort falls from around 5 to 4.5 in the first week of fermentation. The 40 to 120 mg/L acetic acid found in the wort after the first week is very close to the amount found in the final product.<ref name=Oevelen77 />
<ref name=sour> J. Edwards and A. DiCaprio. [http://www.process-nmr.com/pdfsPresentation/Edwards%20-%20SMASH%202014%20-%20MNova%20Users%20Meeting%20-%209-7-14.pdf| When Beer Goes Sour: An NMR Investigation], Mestrelab
MNova Users Meeting, SMASH – Atlanta, GA, September 7, 2014</ref> Significant changes to the concentration of acetic acid should not occur until the ethanol has a chance to oxidize in aging in the bottle over many years or even decades.<ref name=Vanderhaegen1> B. Vanderhaegen, H. Neven, H. Verachtert, G. Derdelinckx [http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCAQFjAA&url=http%3A%2F%2Fwww.researchgate.net%2Fprofile%2FGuy_Derdelinckx%2Fpublication%2F222839054_The_chemistry_of_beer_aging__a_critical_review%2Flinks%2F0c960523339c4b25a6000000.pdf&ei=Tq3IVKmfFcGyogSs_YLQCA&usg=AFQjCNFaBrvqDGjqEV2I9uQ73dYh_ParXg&sig2=Z8dY4iDHozbT1eb9JeAdrw&bvm=bv.84607526,d.cGU| The chemistry of beer aging – a critical review], 2006</ref><ref name = Werner> Werner Van Obberghen, '''2. Het algemene productieproces van bier'''</ref> The pellicle that forms on the top of the wort may be the product of acetobacteria during the enteric phase,[9] though most other sources inidcate that the pellicle is the result of Brettanomyces (with Pichia and Candida).<ref name="Guinard">Jean-Xavier Guinard, [[Books#Classic Beer Styles: Lambic|Classic Beer Styles: Lambic]], 1990</ref>
[[file:Brettanomyces_micrograph.jpg|thumb|right|Brettanomyces sp.]]
Brettanomyces inherits the role of most prominent yeast genera from Saccharomyces around 8 months, and continues consuming sugars in the wort. Final attenuation can reach over 80% in lambic through the continued action of Brettanomyces, which is often referred to as "overattenuation" or "superattenuation". This is greater than is usually possible with Saccharomyces alone, as Brettanomyces is able to metabolise sugars that Saccharomyces cannot, generally known as "dextrins". In addition, brettanomyces can metabolise laminarin and pectin, and has a greater affinity for the amino acid proline than Saccharomyces<ref name=Crauwels1> S. Crawels et. al. [http://link.springer.com/article/10.1007%2Fs00253-015-6769-9| Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains], 2015</ref>. There is some inter-strain variability on what sugars Brettanomyces can metabolize (arbutin, β-methyl-D-glucoside, et al. are only metabolized by some strains of Brettanomyces.)<ref name=Crauwels1> S. Crawels et. al. [http://link.springer.com/article/10.1007%2Fs00253-015-6769-9| Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains], 2015</ref>
Brettanomyces has been implicated in producing most of the aroma compounds in Lambic.<ref name="Guinard">Jean-Xavier Guinard, [[Books#Classic Beer Styles: Lambic|Classic Beer Styles: Lambic]], 1990</ref> Sensory-significant quantities of ethyl acetate and ethyl lactate form at this time from ethanol entering into an ester bond with [[Acetic acid|acetic]] and [[lactic acid]], respectively. In addition, ethylphenols formed from hydroxycinammic acid -- found in the grain used to make the wort -- contribute an odor often described as "horse sweat", "barnyard", or "leather" <ref name=Crauwels1> S. Crawels et. al. [http://link.springer.com/article/10.1007%2Fs00253-015-6769-9| Comparative phenomics and targeted use of genomics reveals variation in carbon and nitrogen assimilation among different Brettanomyces bruxellensis strains], 2015</ref> <ref name=Lentz1> M. Lentz and C. Harris. [https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwirpvaJlerMAhVBz2MKHXxYB_kQFggnMAE&url=http%3A%2F%2Fwww.mdpi.com%2F2304-8158%2F4%2F4%2F581%2Fpdf&usg=AFQjCNHZB4IHgQasVxVL3JjdmMcWjdFIUw&sig2=pJ8f-mmJKAYHIfO5xj7GhQ| Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast], 2015</ref>. The esterization process is greatly helped by the enzyme esterase provided by Brettanomyces. However, the enzymatic esterization is highly reversible and esters found in high concentrations in the lambic prior to the presence of the esterase will often achieve a lower equilibrium at the end of fermentation. This is the case with iso-amyl acetate, which is produced by Saccharomyces and is a characteristic odor compound in many other beers.
Protect
611
edits

Navigation menu