312
edits
Changes
Updated turbid mashing, restructured page
[[File:LambicInfoDragon.png|right|350px]]
[[An_Overview_of_Lambic#Brewing_Lambic|← An Overview of Lambic]]
==BrewingIntroduction==<font size="3">'''Seasons'''</font>
Lambic is brewed seasonally, with the brewing primarily occurs in the winter (season extending roughly from October through to May, although the . The exact dates for beginning and ending the brewing season are determined by the brewer based on outside nighttime temperature)and the brewer’s preferences. The Because traditional lambic is cooled overnight in a shallow pan called a coolship by exposure to outside air, cold temperatures help are necessary to properly cool the beer and begin the fermentation processwort. Additionally, there are many may either be undesirable bacteria or an undesirable microbe balance in the air during the summer that in warmer months which can infect the wort and negatively influence the fermentation. This can introduce off flavorsand the developing flavor profile of the lambic.
==Raw Ingredients== The Royal Decrees of May 20, 1965 and March 31, 1993 required that lambic brewers use at least 30% wheat.<ref name=“GeuzeKriek”>Jef Van den Steen, [[Books#Geuze & Kriek: The Secret of Lambic Beer|Geuze & Kriek: The Secret of Lambic Beer]], 2012</ref> Today's modern lambic is brewed using a grain bill of roughly 30-40% raw (ungerminated) wheat and 60-70% malted barley (2-row or a combination of 2-row and 6-row). Recipes from the 1800s actually called for even more unmalted wheat.<ref name=LambicInfoConvoLacambre>LambicG.Info Interview with Jean Van Roy and Jean Pierre Van RoyLacambre, Traité complet de la fabrication des bières et de la distillation, May 20151851.</ref> In most cases, both the wheat and the barley are coming from Belgian or German farms. The goal is to create wort that is rich in protein, amino acids and dextrins in order to provide nourishment to the microorganisms for months and years of fermentation.
Aged hops also play an important role in lambic. Hops are necessary because of their bacteriostatic properties and to curb the growth of bacteria. This is why hops over a year old are used; they have lost the majority of their bittering properties but not their bacteriostatic properties.<ref name=PalmBoon>Boon Brewery, Brewing Process http://palmbreweries.com/en/boon</ref> Traditionally, hops containing low amounts of alpha acids are aged for anywhere between a year and three years; although some bales of hops wind up aging much longer. The hops are typically stored in an environment where they are susceptible to drastic temperature changes, such as an attic.
==Turbid mashing== ===Introduction and brief history===Lambic production employs a time and labor-intensive mashing process known as turbid mashing. Belgian legal structure in the 1800s favored mashing procedures like turbid mashing as they allowed for a lower water to grain ratio to be used while more effectively extracting carbohydrates from the grain.<font sizeref name="'Johnson 1918'/> Turbid mashing involves the removal of mash runnings before the mash is completed. These turbid runnings have not been fully converted in the mash and therefore they contribute complex carbohydrates and proteins to lambic wort which can feed a diverse community of yeast and bacteria during the long lambic fermentation process.<ref name='Guinard'>Jean-Xavier Guinard, [[Books#Classic_Beer_Styles:_Lambic|Classic Beer Styles: Lambic]], 1990.</ref> Although turbid mashing may be beneficial to the specific conditions of lambic fermentation, and lambic is one of the last remaining beers to use this process commercially, the method and similar mashing procedures were used historically for a variety of different beers in Belgium and northern France (e.g. bière de garde<ref name='Evans, 1905>R.E. Evans, 1905. The beer and brewing systems of Northern France. Journal of the Institute of Brewing. 11(3") 223-238.</ref>). Among Belgian beers using turbid mashing were low ABV beers which were not intended for long aging.<ref name='Johnson 1918'/>In comparison to the single infusion system of mashing favored in England, or even multiple step infusion mashes without the removal of turbid wort, Belgian brewers around 1900 felt that turbid mashing resulted in beers with a fuller body and richer flavor development.<ref name='Johnson 1918'/><ref name='BoilingJohnson 1895'/> ===Process===The lambic grist of malted barley and raw wheat must be milled before they can be used for brewing. This may occur the day before brewing or on the morning of the brew. The brewing process begins when the milled grains are transferred into the mash tun and mixed with water. This mixture, termed the mash, is carried through multiple rests by infusion of hot water to reach different resting temperatures. The temperature rests of the mash are controlled to hit ranges where different enzymes within the malted barley are active on components in the grain, such as converting starches in the grain to fermentable sugars and breaking down proteins. Turbid mashing begins with very a very thick (low water to grain ratio) and cool temperature rest compared to standard mashing. This helps the mash avoid becoming ‘set’ or solidified due to low water to grain ratio and high amount of ungelatinized raw grain traditionally used in lambic breweries.<ref name='Johnson 1918'/> Subsequent rests are achieved by the addition of near boiling water (called infusions) to raise the temperature of the mixture. The exact number of steps and target temperatures of the steps varies among different brewers, but typical steps include a beta glucan rest, a protein rest, multiple saccharification rests and a mash out. These rests are discussed further in the example mash profile below. Turbid mashing derives its name from the cloudy or turbid wort which is drawn off at specific points during mashing process. This cloudy wort contains starches and proteins which have not been broken down by the enzymes in the mash into fermentable sugars, shorter peptides and amino acids. Turbid wort is transferred to a boiling kettle and heated to near boiling temperatures, denaturing the enzymes present in the liquid and preventing further conversion of starches or proteins. In most lambic breweries this is accomplished in a second boil kettle, but in some more modern breweries (e.g. 3 Fonteinen) where only one kettle is present, the turbid runnings are heated in the single boil kettle. Due to the starch and protein rich nature of this wort, care must be taken with this wort to avoid scorching during heating. In some breweries, kettles for turbid runnings have chains<ref name='Johnson 1918'/><ref name='Johnson 1895'/> or propellers (e.g. Cantillon) to ensure the turbid wort is mixed and does not scorch. In some breweries, especially those using older equipment, the removal or turbid runnings is also necessary to provide sufficient space for additional infusions of water to reach the remaining steps of the mash. Once the mash is complete the sweet wort is separated from the grain by draining through the false bottom. As with non-lambic breweries, the wort is recirculated back into the mash tun first to aid in clarification before collection of wort in the boiling kettle(s). The turbid runnings are then added back to the mash. In the case of breweries with two boil kettles this is done after the mash is drained for the first time. At breweries with only one boiling kettle the turbid wort is added back before recirculation and draining of the mash. After the mash and turbid runnings have been drained, the grain is rinsed with near-boiling water in a process called sparging. Sparging temperatures in lambic breweries are much higher than in conventional breweries. The sparging process ends at the discretion of the brewer, generally when the target pre-boil volume is reached or when the grains have almost no soluble material left to contribute to additional sparges. Wort collected from draining the mash, the turbid runnings, and from the sparging is combined into one or two boiling kettles (depending on the brewery) and the wort is boiled. An example of a turbid mash schedule, adapted from [[Books#Classic_Beer_Styles:_Lambic|Guinard]] (1990), [[Books#Wild_Brews:_Culture_and_Craftsmanship_in_the_Belgian_Tradition|Sparrow]] (2005) and Cantillon’s current process<ref>Personal communication with Jean van Roy, October 2013 and March 2014.</fontref>is as follows: * Mix water and grain to reach a rest temperature of 45C/113F for 10 minutes. At this temperature rest enzymes are active to break down beta glucans in the raw wheat, helping the mash to be more fluid at later steps.* Add near boiling water to reach a rest temperature of 58C/136F (protein rest). The enzymes active in this temperature range break down proteins. Rest for 5 minutes.* Extract a portion of turbid liquid from the mash and transfer to a kettle for heating to 80C/176F.* Add near boiling water to reach a rest temperature of 60C/149F (saccharification step 1). The enzymes active at this step convert starches in the grain into fermentable sugars. There are two main enzymes active in the saccharification temperature range. At cooler temperatures, such as in this rest, the balance between these two enzymes favors the production of simpler sugars. This temperature is held for a rest of 30 minutes.* Extract a portion of turbid liquid from the mash and combine with the previous turbid liquid. The mixture is heated to 80C/176F.* Add near boiling water to reach a rest temperature of 72C/162F and rest for 20 minutes. This temperature also falls into the range of saccharification enzymes. The warmer temperatures of this rest favor the production of intermediate chain length saccharides which may be less fermentable to normal brewer’s yeast but may be accessible to certain bacteria and additional yeast found in lambic fermentations.* Drain the wort into a separate kettle for boiling. This wort is heated toward a boil once enough wort is present in the boil kettle to allow heating without scorching. A boil may be reached before the final runnings are collected, or it may begin shortly after the final runnings are collected.* Transfer the hot turbid wort back to mash and mix with the grain. This raises the temperature to near 78C/172 F. The mash is allowed to rest for roughly 20 minutes at this temperature. In the case of a brewery with only one boiling vessel, this step is done before draining the mash into the boiling kettle. In that case it is necessary to ensure that sufficient space remains in the mash tun for the turbid wort to be added back. This is then drained off into the boil kettle.* Begin sparging (rinsing) the grain with water at 85C/185F. The wort collected from sparging is transferred to the boil kettle. ==Boiling==
Lambic boils can last upwards of five hours. Historically some boils have lasted days but modern practices run anywhere between 2 hours and 5 hours. Boiling serves a few purposes. These include:
*Reduction in liquid collected during extensive sparging to provide higher sugar content and thus increased alcohol content.
Boiling is also when hops are added. The brewer will make a hop addition as the kettles are being filled, before the wort actually begins to boil. Other than being aged, the hops are usually Belgian, Czech, or German grown hops typically of the Hallertauer variety. It is important to use hops with low alpha acid content as brewers are not looking for bitterness or acid contents; only the antimicrobial properties contained within the hop. This will prevent undesired molds and bacterias such as acetobacter from inhabiting the wort.
After boiling is complete, the wort is sent through a filter (often a simple metal screen) to clear the wort of major hop and trub debris. This slow process will eventually drain the wort into a vessel called a [[Koelschip|koelschip]] (coolship). Coolships often reside in the brewery's highest most point next to slatted windows so that the cool night air can deposit hosts of microorganisms that will ferment out the wort into lambic. This process can only happen during the cooler months of the year due to the fact that molds have a difficult time surviving the cold temperatures. It will take the wort a period of about 10 hours to cool to the desired temperature at which point it will be transferred to barrels.
==BarrelsFermentation==<font size="3">'''Barrel Selection'''</font> Lambic breweries do not like fresh barrels. Used red or white wine barrels are preferred. Most of the oak character has been stripped from the barrel, so not much will come through in the final lambic taste. Barrels vary widely in size, including sizes such as 267 liter Tonnes, 550-650 liter Pipes, and 3,000 to 20,000 liter Foudres. Larger barrels or foudres are preferred over smaller barrels. These barrels are typically made from oak, chestnut, or cedar. <font size="3">'''Preparation'''</font> A beechwood twig brush called a ramon is used to scrub out the sediments, and, as needed, the barrel can be scraped clean by spinning sharpened chains inside it. The barrels are washed with hot water and steamed to sanitize and prepare them for use. If they are to be stored empty, sulfur is burned in them to preserve their sanitation. Because wooden barrels tend to carry microbiological agents, the extent to which the barrel is cleaned significantly impacts the beer that it produces. Sanitation of barrels is extremely important as the process used lead to substantial variation in the beer produced.<ref name=LambicTreasure>Lambic: Belgium's Unique Treasure, http://morebeer.com/articles/lambicbrewing</ref>
The wort is transferred via hose into the barrels through the top bung hole. Barrels are completely filled and loosely capped with a silicon or wooden cork. In some cases a tubing system will serve as an overflow into buckets for when initial fermentation begins; making it easier to clean up after the barrels. Fermentation will typically occur within a few days, but can take up to a couple of weeks to begin. Factors that can affect when fermentation begins include the temperatures during inoculation or the temperatures during those first few days in the barrel. Organisms work more quickly at higher temperatures.
Lambic will develop and rest in the barrels for between a year and three years in most cases. Some experiments have led to lambic resting for upwards of five years though. As lambic ages in the barrel, it matures. It takes on a more complex profile as different yeasts and bacterias interact, die off, rearrange esters and fermentation byproducts, etc. The lambic's sugar content is decreased over time and it becomes drier. It will also take on more of the barrels character due to longer exposure time and will oxidize.
Most barrels are topped up only once after initial fermentation has completed and there is a significant airspace between the lambic and the bung. After most CO2 production has been completed, the barrels are hard-bunged and left to rest indefinitely.